STAT0041: Stochastic Calculus

Lecture 12 - Stochastic Differential Equations

Lecturer: Weichen Zhao

Fall 2024

Key concepts:

- Stochastic differential equations;
- Existence and uniqueness of solutions.

12.1 Introduction

Stochastic differential equations (SDEs) are mathematical models describe random phenomena in physics, finance, and etc.

Let $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ be a filtrated probability space satisfies usual conditions, B_t be a \mathscr{F}_t adapted Brownian motion. We consider following Itô stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t.$$
(12.1)

Actually, it is supposed to be a stochastic integral equation

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s,$$
(12.2)

where b(t, x) called *drift coefficient* and $\sigma(t, x)$ called *diffusion coefficient* are \mathscr{F}_t -adapted.

Example 12.1 (Ornstein–Uhlenbeck processes/Langevin equation) Langevin proposed a possible improvement of mathematical model of the motion of a Brownian particle which models frictional forces as follows for the one-dimensional case:

$$X = -bX_t + \sigma\xi_t,$$

where ξ_t is "white noise", b > 0 is a coefficient of friction, and σ is a diffusion coefficient. We form this into SDEs

$$\begin{cases} dX_t = -bX_t dt + \sigma dB_t \\ X(0) = X_0, \end{cases}$$
(12.3)

for some initial distribution X_0 , independent of the Brownian motion. This is the Langevin equation. In this interpretation X_t is the velocity of the Brownian particle.

Example 12.2 (Geometric Brownian Motion) Let S_t denote the price of a stock at time t. We can model the evolution of S_t in time by supposing that $\frac{dS_t}{S_t}$, the relative change of price, evolves according to the SDE

$$\frac{dS_t}{S_t} = \mu dt + \sigma dB_t$$

12.2 Existence and uniqueness of solutions

Theorem 12.3 (Existence and uniqueness of (strong) solution) If that drift coefficient b and diffusion coefficient σ satisfy:

(1) There exist constant C, such that

$$|b(t,x)| + |\sigma(t,x)| \leq C(1+|x|), \quad \forall x \in \mathbb{R}^n, t \in [0,T],$$

(2) There exist constant K, such that

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \leqslant K|x-y|, \quad \forall x,y \in \mathbb{R}^n, t \in [0,T].$$

Then for all \mathscr{F}_0 -measurable random variable ξ , there exist unique \mathscr{F}_t -adapted X_t , satisfies

$$\begin{cases} dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t, \\ X_0 = \xi. \end{cases}$$